Information measures for object recognition accommodating signature variability

نویسندگان

  • Matthew L. Cooper
  • Michael I. Miller
چکیده

This paper presents measures characterizing the information content of remote observations of ground scenes imaged via optical and infrared sensors. Object recognition is posed in the context of deformable templates; the special Euclidean group is used to accommodate geometric variation of object pose. Principal component analysis of object signatures is used to represent and efficiently accommodate variation in object signature due to changes in the thermal state of the object surface. Mutual information measures, which are independent of the recognition system, are calculated quantifying both the information gain due to remote observations of the scene and the information loss due to signature variability. Signature model mismatch is quantitatively examined using the Kullback–Leibler divergence. Expressions are derived quadratically approximating the posterior conditional entropy on the orthogonal group for high signal-to-noise ratio. It is demonstrated that quadratic modules accurately characterize the posterior entropy for broad ranges of signal-to-noise ratio. Information gain in multiple-sensor scenarios is quantified, and it is demonstrated that the cost of signature uncertainty for the Comanche series of FLIR images collected by the U.S. Army Night Vision Electronic Sensors Directorate is approximately 0.8 bits with an associated near doubling of mean-squared error uncertainty in pose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signature Random Fields for Accommodating Illumination Variability

In this paper, we document an extension to traditional pattern-theoretic object templates to jointly accommodate variations in object pose and in the radiant appearance of the object surface. We first review classical object templates accommodating pose variation. We then develop an efficient subspace representation for the object radiance indexed on the surface of the three dimensional object ...

متن کامل

Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

متن کامل

Information Measures for Object Recognition

We have been studying information theoretic measures, entropy and mutual information, as performance bounds on the information gain given a standard suite of sensors. Object pose is described by a single angle of rotation using a Lie group parameterization; observations are simulated using CAD models for the targets of interest and simulators such as the PRISM infrared simulator. Variability in...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Static Signature Recognition System for User Authentication Based Two Level Cog, Hough Transform and Neural Network

This paper propose signature recognition system based on centre of gravity,hough transform and neural network for offline signature. Similar to other biometric measures, signatures have inherent variability and so pose a difficult recognition problem.. In this paper, signature is preprocessed through binarization, cutting edges and thinning which provides more accurate platform for feature extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000